Pixel-planes 5: a heterogeneous multiprocessor graphics system using processor-enhanced memories

Author:

Fuchs Henry1,Poulton John1,Eyles John1,Greer Trey1,Goldfeather Jack2,Ellsworth David1,Molnar Steve1,Turk Greg1,Tebbs Brice1,Israel Laura1

Affiliation:

1. Department of Computer Science, University of North Carolina, Chapel Hill, NC

2. Department of Mathematics, Carleton College, Northfield, MN.

Abstract

This paper introduces the architecture and initial algorithms for Pixel-Planes 5, a heterogeneous multi-computer designed both for high-speed polygon and sphere rendering (1M Phong-shaded triangles/second) and for supporting algorithm and application research in interactive 3D graphics. Techniques are described for volume rendering at multiple frames per second, font generation directly from conic spline descriptions, and rapid calculation of radiosity form-factors. The hardware consists of up to 32 math-oriented processors, up to 16 rendering units, and a conventional 1280 × 1024-pixel frame buffer, interconnected by a 5 gigabit ring network. Each rendering unit consists of a 128 × 128-pixel array of processors-with-memory with parallel quadratic expression evaluation for every pixel. Implemented on 1.6 micron CMOS chips designed to run at 40MHz, this array has 208 bits/pixel on-chip and is connected to a video RAM memory system that provides 4,096 bits of off-chip memory. Rendering units can be independently reasigned to any part of the screen or to non-screen-oriented computation. As of April 1989, both hardware and software are still under construction, with initial system operation scheduled for fall 1989.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,General Computer Science

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boustrophedonic Frames: Quasi-Optimal L2 Caching for Textures in GPUs;2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT);2023-10-21

2. DTexL: Decoupled Raster Pipeline for Texture Locality;2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO);2022-10

3. SPIDER: An Effective, Efficient and Robust Load Scheduler for Real-time Split Frame Rendering;2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2022-05

4. TCOR: A Tile Cache with Optimal Replacement;2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2022-04

5. Mach-RT: A Many Chip Architecture for High Performance Ray Tracing;IEEE Transactions on Visualization and Computer Graphics;2022-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3