Properties and Evolution of Internet Traffic Networks from Anonymized Flow Data

Author:

Meiss Mark1,Menczer Filippo2,Vespignani Alessandro2

Affiliation:

1. Indiana University

2. Indiana University and Institute for Scientific Interchange

Abstract

Many projects have tried to analyze the structure and dynamics of application overlay networks on the Internet using packet analysis and network flow data. While such analysis is essential for a variety of network management and security tasks, it is infeasible on many networks: either the volume of data is so large as to make packet inspection intractable, or privacy concerns forbid packet capture and require the dissociation of network flows from users’ actual IP addresses. Our analytical framework permits useful analysis of network usage patterns even under circumstances where the only available source of data is anonymized flow records. Using this data, we are able to uncover distributions and scaling relations in host-to-host networks that bear implications for capacity planning and network application design. We also show how to classify network applications based entirely on topological properties of their overlay networks, yielding a taxonomy that allows us to accurately identify the functions of unknown applications. We repeat this analysis on a more recent dataset, allowing us to demonstrate that the aggregate behavior of users is remarkably stable even as the population changes.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Scale Enrichment and Statistical Cyber Characterization of Network Traffic;2022 IEEE High Performance Extreme Computing Conference (HPEC);2022-09-19

2. LandmarkMiner;ACM Transactions on Internet of Things;2021-08-31

3. Data representation for CNN based internet traffic classification: a comparative study;Multimedia Tools and Applications;2020-08-19

4. A review on machine learning–based approaches for Internet traffic classification;Annals of Telecommunications;2020-06-22

5. FENet: Roles Classification of IP Addresses Using Connection Patterns;2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT);2019-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3