A review on machine learning–based approaches for Internet traffic classification
Author:
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering
Link
https://link.springer.com/content/pdf/10.1007/s12243-020-00770-7.pdf
Reference389 articles.
1. Leiner BM, Cerf VG, Clark DD, Kahn RE, Kleinrock L, Lynch DC, Postel J, Roberts LG, Wolff S (2009) A brief history of the internet. ACM SIGCOMM Comput Commun Rev 39(5):22–31
2. Salman Ola, Elhajj Imad, Chehab Ali, Kayssi Ayman (2018) Iot survey: an sdn and fog computing perspective. Comput Netw 143:221–246
3. Seddiki MS, Shahbaz M, Donovan S, Grover S, Park M, Feamster N, Song YQ (2014) Flowqos: Qos for the rest of us. In: Proceedings of the Third Workshop on Hot Topics in Software Defined Networking, HotSDN ’14, pp 207–208. ACM, New York
4. Park B, Won Y, Chung J, Kim MS, Hong JWK (2013) Fine-grained traffic classification based on functional separation. Int J Netw Manag 23(5):350–381
5. Aceto G, Dainotti A, De Donato W, Pescapé A (2010) Portload: taking the best of two worlds in traffic classification. In: 2010 INFOCOM IEEE Conference on Computer Communications Workshops, pp 1–5. IEEE
Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The art of time-bending: Data augmentation and early prediction for efficient traffic classification;Expert Systems with Applications;2024-10
2. Enhancing Firewall Packet Classification through Artificial Neural Networks and Synthetic Minority Over-Sampling Technique: An Innovative Approach with Evaluative Comparison;Applied Sciences;2024-08-22
3. Analyzing anonymous activities using Interrupt-aware Anonymous User-System Detection Method (IAU-S-DM) in IoT;Scientific Reports;2024-08-05
4. A Knowledge Distillation-Driven Lightweight CNN Model for Detecting Malicious Encrypted Network Traffic;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30
5. Reliable feature selection for adversarially robust cyber-attack detection;Annals of Telecommunications;2024-06-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3