Cross Refinement Techniques for Markerless Human Motion Capture

Author:

Li Miaopeng1ORCID,Zhou Zimeng1,Liu Xinguo1

Affiliation:

1. State Key Lab of CAD 8 CG, Zhejiang University, Hangzhou, China

Abstract

This article presents a global 3D human pose estimation method for markerless motion capture. Given two calibrated images of a person, it first obtains the 2D joint locations in the images using a pre-trained 2D Pose CNN, then constructs the 3D pose based on stereo triangulation. To improve the accuracy and the stability of the system, we propose two efficient optimization techniques for the joints. The first one, called cross-view refinement, optimizes the joints based on epipolar geometry. The second one, called cross-joint refinement, optimizes the joints using bone-length constraints. Our method automatically detects and corrects the unreliable joint, and consequently is robust against heavy occlusion, symmetry ambiguity, motion blur, and highly distorted poses. We evaluate our method on a number of benchmark datasets covering indoors and outdoors, which showed that our method is better than or on par with the state-of-the-art methods. As an application, we create a 3D human pose dataset using the proposed motion capture system, which contains about 480K images of both indoor and outdoor scenes, and demonstrate the usefulness of the dataset for human pose estimation.

Funder

NSFC

FaceUnity Technology

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3