Affiliation:
1. Masaryk University, Brno, Czech Republic
Abstract
Gait recognition from motion capture data, as a pattern classification discipline, can be improved by the use of machine learning. This article contributes to the state of the art with a statistical approach for extracting robust gait features directly from raw data by a modification of Linear Discriminant Analysis with Maximum Margin Criterion. Experiments on the CMU MoCap database show that the suggested method outperforms 13 relevant methods based on geometric features and a method to learn the features by a combination of Principal Component Analysis and Linear Discriminant Analysis. The methods are evaluated in terms of the distribution of biometric templates in respective feature spaces expressed in a number of class separability coefficients and classification metrics. Results also indicate a high portability of learned features, what means that we can learn what aspects of walk people generally differ in and extract those as general gait features. Recognizing people without needing group-specific features is convenient, as particular people might not always provide annotated learning data. As a contribution to reproducible research, our evaluation framework and database have been made publicly available. This research makes motion capture technology directly applicable for human recognition.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献