An Integrated Exploration and Virtual Platform Framework for Many-Accelerator Heterogeneous Systems

Author:

Sotiriou-Xanthopoulos Efstathios1ORCID,Xydis Sotirios1,Siozios Kostas1,Economakos George1,Soudris Dimitrios1

Affiliation:

1. National Technical University of Athens, Greece

Abstract

The recent advent of many-accelerator systems-on-chip (SoC), driven by the need for maximizing throughput and power efficiency, has led to an exponential increase in the hardware/software co-design complexity. The reason of this increase is that the designer has to explore a vast number of architectural parameter combinations for each single accelerator, as well as inter-accelerator configuration combinations under specific area, throughput, and power constraints, given that each accelerator has different computational requirements. In such a case, the design space size explodes. Thus, existing design space exploration (DSE) techniques give poor-quality solutions, as the design space cannot be adequately covered in a fair time. This problem is aggravated by the very long simulation time of the many-accelerator virtual platforms (VPs). This article addresses these design issues by (a) presenting a virtual prototyping solution that decreases the exploration time by enabling the evaluation of multiple configurations per VP simulation and (b) proposing a DSE methodology that efficiently explores the design space of many-accelerator systems. With the use of two fully developed use cases, namely an H.264 decoding server for multiple video streams and a parallelized denoising system for MRI scans, we show that the proposed DSE methodology either leads to Pareto points that dominate over those of a typical DSE scenario or finds new solutions that might not be found by the typical DSE. In addition, the proposed virtual prototyping solution leads to DSE runtime reduction reaching 10 × for H.264 and 5 × for Rician denoise.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference29 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast DSE of reconfigurable accelerator systems via ensemble machine learning;Analog Integrated Circuits and Signal Processing;2021-05-28

2. The TaPaSCo Open-Source Toolflow;Journal of Signal Processing Systems;2021-05

3. OpenCL-based Virtual Prototyping and Simulation of Many-Accelerator Architectures;ACM Transactions on Embedded Computing Systems;2018-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3