Multilingual Topic Models for Bilingual Dictionary Extraction

Author:

Liu Xiaodong1,Duh Kevin1,Matsumoto Yuji1

Affiliation:

1. Nara Institute of Science and Technology

Abstract

A machine-readable bilingual dictionary plays a crucial role in many natural language processing tasks, such as statistical machine translation and cross-language information retrieval. In this article, we propose a framework for extracting a bilingual dictionary from comparable corpora by exploiting a novel combination of topic modeling and word aligners such as the IBM models. Using a multilingual topic model, we first convert a comparable document -aligned corpus into a parallel topic -aligned corpus. This novel topic-aligned corpus is similar in structure to the sentence -aligned corpus frequently employed in statistical machine translation and allows us to extract a bilingual dictionary using a word alignment model. The main advantages of our framework is that (1) no seed dictionary is necessary for bootstrapping the process, and (2) multilingual comparable corpora in more than two languages can also be exploited. In our experiments on a large-scale Wikipedia dataset, we demonstrate that our approach can extract higher precision dictionaries compared to previous approaches and that our method improves further as we add more languages to the dataset.

Funder

China Scholarship Council

JSPS KAKENHI

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting Cross-Lingual Information Gaps in Wikipedia;Companion Proceedings of the ACM Web Conference 2023;2023-04-30

2. Novel Topic Models for Parallel Topics Extraction from Multilingual Text;Intelligent Information and Database Systems;2023

3. Topic Modeling Using Latent Dirichlet allocation;ACM Computing Surveys;2022-09-30

4. A word embedding-based approach to cross-lingual topic modeling;Knowledge and Information Systems;2021-04-24

5. Improving Semantic Coherence of Gujarati Text Topic Model Using Inflectional Forms Reduction and Single-letter Words Removal;ACM Transactions on Asian and Low-Resource Language Information Processing;2021-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3