Improving Semantic Coherence of Gujarati Text Topic Model Using Inflectional Forms Reduction and Single-letter Words Removal

Author:

Chauhan Uttam1ORCID,Shah Apurva2

Affiliation:

1. Vishwakarma Government Engineering College, Gujarat, India

2. The Maharaja Sayajirao University of Baroda, Gujarat, India

Abstract

A topic model is one of the best stochastic models for summarizing an extensive collection of text. It has accomplished an inordinate achievement in text analysis as well as text summarization. It can be employed to the set of documents that are represented as a bag-of-words, without considering grammar and order of the words. We modeled the topics for Gujarati news articles corpus. As the Gujarati language has a diverse morphological structure and inflectionally rich, Gujarati text processing finds more complexity. The size of the vocabulary plays an important role in the inference process and quality of topics. As the vocabulary size increases, the inference process becomes slower and topic semantic coherence decreases. If the vocabulary size is diminished, then the topic inference process can be accelerated. It may also improve the quality of topics. In this work, the list of suffixes has been prepared that encounters too frequently with words in Gujarati text. The inflectional forms have been reduced to the root words concerning the suffixes in the list. Moreover, Gujarati single-letter words have been eliminated for faster inference and better quality of topics. Experimentally, it has been proved that if inflectional forms are reduced to their root words, then vocabulary length is shrunk to a significant extent. It also caused the topic formation process quicker. Moreover, the inflectional forms reduction and single-letter word removal enhanced the interpretability of topics. The interpretability of topics has been assessed on semantic coherence, word length, and topic size. The experimental results showed improvements in the topical semantic coherence score. Also, the topic size grew notably as the number of tokens assigned to the topics increased.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference54 articles.

1. Juhi Ameta Nisheeth Joshi and Iti Mathur. 2012. A lightweight stemmer for Gujarati. arXiv:1210.5486). Retrieved from https://arxiv.org/abs/1210.5486. Juhi Ameta Nisheeth Joshi and Iti Mathur. 2012. A lightweight stemmer for Gujarati. arXiv:1210.5486). Retrieved from https://arxiv.org/abs/1210.5486.

2. Probabilistic topic models

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3