General-Purpose Computing with Soft GPUs on FPGAs

Author:

Kadi Muhammed Al1ORCID,Janssen Benedikt1,Yudi Jones1,Huebner Michael1

Affiliation:

1. Ruhr University of Bochum, Germany

Abstract

Using field-programmable gate arrays (FPGAs) as a substrate to deploy soft graphics processing units (GPUs) would enable offering the FPGA compute power in a very flexible GPU-like tool flow. Application-specific adaptations like selective hardening of floating-point operations and instruction set subsetting would mitigate the high area and power demands of soft GPUs. This work explores the capabilities and limitations of soft General Purpose Computing on GPUs (GPGPU) for both fixed- and floating point arithmetic. For this purpose, we have developed FGPU: a configurable, scalable, and portable GPU architecture designed especially for FPGAs. FGPU is open-source and implemented entirely in RTL. It can be programmed in OpenCL and controlled through a Python API. This article introduces its hardware architecture as well as its tool flow. We evaluated the proposed GPGPU approach against multiple other solutions. In comparison to homogeneous Multi-Processor System-On-Chips (MPSoCs), we found that using a soft GPU is a Pareto-optimal solution regarding throughput per area and energy consumption. On average, FGPU has a 2.9× better compute density and 11.2× less energy consumption than a single MicroBlaze processor when computing in IEEE-754 floating-point format. An average speedup of about 4× over the ARM Cortex-A9 supported with the NEON vector co-processor has been measured for fixed- or floating-point benchmarks. In addition, the biggest FGPU cores we could implement on a Xilinx Zynq-7000 System-On-Chip (SoC) can deliver similar performance to equivalent implementations with High-Level Synthesis (HLS).

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference30 articles.

1. FGPU

2. Floating-Point Arithmetic Using GPGPU on FPGAs

3. Altera Corp. Dec. 2015. Stratix 10 Device Overview. Initial Release. Altera Corp. Dec. 2015. Stratix 10 Device Overview. Initial Release.

4. AMD Inc. 2017. ADM Accelerated Parallel Processing SDK v3.0. Retrieved from http://developer.amd.com/amd-accelerated-parallel-processing-app-sdk/. AMD Inc. 2017. ADM Accelerated Parallel Processing SDK v3.0. Retrieved from http://developer.amd.com/amd-accelerated-parallel-processing-app-sdk/.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3