Making Learned Query Optimization Practical

Author:

Markl Volker1

Affiliation:

1. Technische Universität Berlin, Berlin, Germany

Abstract

Query optimization has been a challenging problem ever since the relational data model had been proposed. The role of the query optimizer in a database system is to compute an execution plan for a (relational) query expression comprised of physical operators whose implementations correspond to the operations of the (relational) algebra. There are many degrees of freedom for selecting a physical plan, in particular due to the laws of associativity, commutativity, and distributivity among the operators in the (relational) algebra, which necessitates our taking the order of operations into consideration. In addition, there are many alternative access paths to a dataset and a multitude of physical implementations for operations, such as relational joins (e.g., merge-join, nestedloop join, hash-join). Thus, when seeking to determine the best (or even a sufficiently good) execution plan there is a huge search space.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference4 articles.

1. Self-tuning histograms

2. Adaptive selectivity estimation using query feedback

3. Bao: Making Learned Query Optimization Practical

4. M. Stillger , G. M. Lohman , V. Markl , and M. Kandil . Leo - db2's learning optimizer . In VLDB , 2001 . M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. Leo - db2's learning optimizer. In VLDB, 2001.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ROME: Robust Query Optimization via Parallel Multi-Plan Execution;Proceedings of the ACM on Management of Data;2024-05-29

2. Quantum-Inspired Digital Annealing for Join Ordering;Proceedings of the VLDB Endowment;2023-11

3. ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Join Algorithms via Reinforcement Learning;Proceedings of the VLDB Endowment;2023-07

4. SkinnerMT;Proceedings of the VLDB Endowment;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3