SEET

Author:

Benala1 Tirimula Rao1,Mall Rajib2

Affiliation:

1. JNTUK University College of Engineering, AP, India

2. Indian Institute of Technology, Kharagpur, India

Abstract

Software development effort estimation (SDEE) is a significant activity in project management and serves as the basis for project bidding, planning, staffing, resource allocation, scheduling, and cost estimation. The accuracy of SDEE techniques varies from project to project, which makes them rather unreliable. In this backdrop, we propose a foundation centered ensemble-based SDEE approach. The primary goal of this approach is to design an ensemble consisting of different machine learning methods for improving the prediction accuracy of SDEE. In recent times, several research results have been reported on machine learning based ensemble design, but extreme learning machine (ELM) and least square support vector regression (LSSVR) have not been used to develop an ensemble. We chose three machine learning techniques, namely ELM, LSSVR, and multilayer perceptron (MLP) as the base techniques to build an ensemble. We investigated the performance of a homogeneous ensemble design using a linear combination rule with standardized accuracy as a weight factor. The performance of the ensemble model is validated and compared with root mean square error (RMSE) based weighted average ensemble model with equivalent configuration. The experimental study was conducted using publicly available PROMISE repository test suite. We achieved promising results for SEET model compared to base learners and RMSE ensemble model.

Publisher

Association for Computing Machinery (ACM)

Reference48 articles.

1. Systematic literature review of machine learning based software development effort estimation models;Wen J.;Information and Software Technology,2012

2. Mendes-Moreira J. Soares C. Jorge A.M. and Sousa J.F.D. 2012. Ensemble approaches for regression: A survey. ACM Computing Surveys (CSUR) 45(1) 10 (Nov. 2012).

3. Steinki O. 2014. An Investigation Of Ensemble Methods To Improve The Bias And/Or Variance Of Option Pricing Models Based On Levy Processes (Doctoral dissertation Doctoral Thesis University of Manchester 213) (2014).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3