Software effort estimation using stacked ensembled techniques and proposed stacking ensemble using principal component regression as super learner

Author:

Priya Varshini A.G.1,Anitha Kumari K.2

Affiliation:

1. IT Department, Dr. Mahalingam College of Engineering and Technology, Pollachi, India

2. IT Department, PSG College of Technology, Coimbatore, India

Abstract

As the size and complexity of projects grows, estimates are increasingly used, especially in the agile community. Software development cannot begin without first conducting thorough planning and estimation. Estimating how much work a project will take is a common first step in the software development life cycle. By employing ensemble techniques, we integrate multiple learning algorithms to build a more accurate predictive model. The core elements of our proposed stacked ensemble strategy include Decision Tree, Principal Components Regression, Random Forest, NeuralNet, GLMNET, XGBoost, Earth, and Support Vector Machine. Moreover, we augment the model’s performance by incorporating a blend of these foundational algorithms with other ensemble regression methods. Extensive testing in the suggested research work with a number of Super Learners demonstrates that Regression is the best technique for judging effort. The evaluation of the different estimators involved the use of various metrics, including Mean Absolute Error, Root Mean Squared Error, Mean Squared Error, Percentage of Close Approximations within 25% of the True Values (PRED (25)), R-Squared Coefficients, Precision, Recall, and F1-Score. The proposed method yields more trustworthy predicted performance than either single-model approaches or stacked ensembles. Effort estimation serves as the foundation for the rest of the project management process.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference22 articles.

1. Tackling requirements uncertainty in software projects: a cognitive approach;Haleem;International Journal of Cognitive Computing in Engineering,2021

2. State of the practice: An exploratory analysis of schedule estimation and software project success prediction;Verner;Information and Software Technology,2007

3. Forecasting of software development work effort: Evidence on expert judgement and formal models;Jørgensen;International Journal of Forecasting,2007

4. Inconsistency of expert judgment-based estimates of software development effort;Grimstad;Journal of Systems and Software,2007

5. Analogy-Based Approaches to Improve Software Project Effort Estimation Accuracy;Resmi;Journal of Intelligent Systems,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Software Test Effort Estimation using Ensemble Learning Algorithms;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3