Affiliation:
1. Robert Bosch GmbH, Renningen
Abstract
Due to the impressive performance of deep neural networks (DNNs) for visual perception, there is an increased demand for their use in automated systems. However, to use deep neural networks in practice, novel approaches are needed, e.g., for testing. In this work, we focus on the question of how to test deep learning-based visual perception functions for automated driving. Classical approaches for testing are not sufficient: A purely statistical approach based on a dataset split is not enough, as testing needs to address various purposes and not only average case performance. Additionally, a complete specification is elusive due to the complexity of the perception task in the open context of automated driving. In this article, we review and discuss existing work on testing DNNs for visual perception with a special focus on automated driving for test input and test oracle generation as well as test adequacy. We conclude that testing of DNNs in this domain requires several diverse test sets. We show how such tests sets can be constructed based on the presented approaches addressing different purposes based on the presented methods and identify open research questions.
Funder
German Federal Ministry for Economic Affairs and Energy
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献