Corner cases in machine learning processes

Author:

Heidecker FlorianORCID,Bieshaar MaartenORCID,Sick BernhardORCID

Abstract

AbstractApplications using machine learning (ML), such as highly autonomous driving, depend highly on the performance of the ML model. The data amount and quality used for model training and validation are crucial. If the model cannot detect and interpret a new, rare, or perhaps dangerous situation, often referred to as a corner case, we will likely blame the data for not being good enough or too small in number. However, the implemented ML model and its associated architecture also influence the behavior. Therefore, the occurrence of prediction errors resulting from the ML model itself is not surprising. This work addresses a corner case definition from an ML model’s perspective to determine which aspects must be considered. To achieve this goal, we present an overview of properties for corner cases that are beneficial for the description, explanation, reproduction, or synthetic generation of corner cases. To define ML corner cases, we review different considerations in the literature and summarize them in a general description and mathematical formulation, whereby the expected relevance-weighted loss is the key to distinguishing corner cases from common data. Moreover, we show how to operationalize the corner case characteristics to determine the value of a corner case. To conclude, we present the extended taxonomy for ML corner cases by adding the input, model, and deployment levels, considering the influence of the corner case properties.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Universität Kassel

Publisher

Springer Science and Business Media LLC

Reference90 articles.

1. Laplante P, Milojicic D, Serebryakov S, Bennett D (2020) Artificial Intelligence and Critical Systems: From Hype to Reality. Computer 53(11):45–52

2. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. In: Proc. of the International Conference on Computer Vision, Venice, pp 2980–2988

3. Wu Y, Kirillov A, Massa F, Lo WY, Girshick R (2019) Detectron2. https://github.com/facebookresearch/detectron2. Accessed 15 July 2022.

4. Baevski A, Zhou Y, Mohamed A, Auli M (2020) wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations. In: Proc. of the Advances in Neural Information Processing Systems, Vancouver, pp 12449–12460

5. Zhao WX, Zhou K, Li J, Tang T, Wang X, Hou Y, Min Y, Zhang B, Zhang J, Dong Z, Du Y, Yang C, Chen Y, Chen Z, Jiang J, Ren R, Li Y, Tang X, Liu Z, Liu P, Nie JY, Wen JR (2023) A Survey of Large Language Models. arXiv preprint arXiv:2303.18223

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3