Efficient Flattening Algorithm for Hierarchical and Dynamic Structure Discrete Event Models

Author:

Bae Jang Won1ORCID,Bae Sang Won2,Moon Il-Chul3,Kim Tag Gon3

Affiliation:

1. Korea Advanced Institute of Science and Technology

2. Kyonggi University, Suwon, Korea

3. Korea Advanced Institute of Science and Technology, Daejeon, Korea

Abstract

Discrete event models are widely used to replicate, analyze, and understand complex systems. DEVS (Discrete Event System Specification) formalism enables hierarchical modeling, so it provides an efficiency in the model development of complex models. However, the hierarchical modeling incurs prolonged simulation executions due to indirect event exchanges through the model hierarchy. Although direct event paths are applied to mitigate this overhead, the situation becomes even worse when a model changes its structures during simulation execution, called a dynamic structure model. This article suggests Coupling Relation Graph (CRG) and Strongly Coupled Component (SCC) concepts to improve hierarchical and dynamic structure DEVS simulation execution. CRG is a directed graph representing DEVS model structure, and SCC is a group of connected components in a CRG. Using CRG and SCC, this article presents (1) how to develop CRG from a DEVS model and (2) how to construct and update direct event paths with respect to dynamic structural changes. In particular, compared to the previous works, the proposed method focuses on the reduction of the updating costs for the direct event paths. Through theoretical and empirical analyses, this article shows that the proposed method significantly reduces the simulation execution time, especially when a simulation model contains lots of components and changes its model structures frequently. We expect that the proposed method would support the faster simulation executions of complex hierarchical and dynamic structure models.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3