Practical Formalism-Based Approaches for Multi-Resolution Modeling and Simulation

Author:

Bae Jang WonORCID,Moon Il-Chul

Abstract

Multi-resolution modeling (MRM) has been considered as an ideal form of simulation to acquire low-resolution scalability as well as high-resolution modeled details. Although both practical and theoretical interests exist in MRM, actual implementations were quite different in terms of cases and methods. Specifically, MRM implementations range from parameter-based interoperation to model exchanges with different resolutions, yet it is difficult to observe a method that focuses on both of these aspects. To this end, this paper introduces a formalism or multi-resolution translational Discrete Event System Specification (MRT-DEVS). Focusing on the practical perspective, MRT-DEVS intends to ease the implementation’s difficulty and reduce the simulation’s execution costs. Specifically, MRT-DEVS embeds state and event translation functions into the model’s specifications so that it enables MRM with less complex mechanisms in terms of operations. Using the provided case study and a reduction to other MRM methods, the theoretical soundness of the proposed method is supported. Moreover, we discussed the pros and the cons of the proposed method from various MRM perspectives. We expect that with all the provided information, MRMS users would consider the proposed method as a practical option to implement their models.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference40 articles.

1. Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems;Zeigler,2000

2. Agent-based modeling and artificial life;Macal,2020

3. Introduction and Overview for Engineering Emergence: A Modeling and Simulation Approach;Rainey,2018

4. Agent-based modeling, large-scale simulations;Parry,2020

5. LDEF Formalism for Agent-Based Model Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3