Rigel

Author:

Kelm John H.1,Johnson Daniel R.1,Johnson Matthew R.1,Crago Neal C.1,Tuohy William1,Mahesri Aqeel1,Lumetta Steven S.1,Frank Matthew I.1,Patel Sanjay J.1

Affiliation:

1. University of Illinois, Urbana, IL, USA

Abstract

This paper considers Rigel, a programmable accelerator architecture for a broad class of data- and task-parallel computation. Rigel comprises 1000+ hierarchically-organized cores that use a fine-grained, dynamically scheduled single-program, multiple-data (SPMD) execution model. Rigel's low-level programming interface adopts a single global address space model where parallel work is expressed in a task-centric, bulk-synchronized manner using minimal hardware support. Compared to existing accelerators, which contain domain-specific hardware, specialized memories, and/or restrictive programming models, Rigel is more flexible and provides a straightforward target for a broader set of applications. We perform a design analysis of Rigel to quantify the compute density and power efficiency of our initial design. We find that Rigel can achieve a density of over 8 single-precision GFLOPS/mm 2 in 45nm, which is comparable to high-end GPUs scaled to 45nm. We perform experimental analysis on several applications ported to the Rigel low-level programming interface. We examine scalability issues related to work distribution, synchronization, and load-balancing for 1000-core accelerators using software techniques and minimal specialized hardware support. We find that while it is important to support fast task distribution and barrier operations, these operations can be implemented without specialized hardware using flexible hardware primitives.

Publisher

Association for Computing Machinery (ACM)

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mach-RT: A Many Chip Architecture for High Performance Ray Tracing;IEEE Transactions on Visualization and Computer Graphics;2022-03-01

2. Monolithically Integrating Non-Volatile Main Memory over the Last-Level Cache;ACM Transactions on Architecture and Code Optimization;2021-12-31

3. Energy-Efficient Hardware-Accelerated Synchronization for Shared-L1-Memory Multiprocessor Clusters;IEEE Transactions on Parallel and Distributed Systems;2021-03-01

4. Ch’i: Scaling Microkernel Capabilities in Cache-Incoherent Systems;2020 IEEE/ACM International Workshop on Runtime and Operating Systems for Supercomputers (ROSS);2020-11

5. Transmuter;Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques;2020-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3