Affiliation:
1. Georgia Institute of Technology, Atlanta, GA, USA
Abstract
Many multi-core processors employ a large last-level cache (LLC) shared among the multiple cores. Past research has demonstrated that sharing-oblivious cache management policies (e.g., LRU) can lead to poor performance and fairness when the multiple cores compete for the limited LLC capacity. Different memory access patterns can cause cache contention in different ways, and various techniques have been proposed to target some of these behaviors. In this work, we propose a new cache management approach that combines dynamic insertion and promotion policies to provide the benefits of cache partitioning, adaptive insertion, and capacity stealing all with a single mechanism. By handling multiple types of memory behaviors, our proposed technique outperforms techniques that target only either capacity partitioning or adaptive insertion.
Publisher
Association for Computing Machinery (ACM)
Cited by
130 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献