A Query Optimizer for Range Queries over Multi-Attribute Trajectories

Author:

Xu Jianqiu1ORCID,Lu Hua2ORCID,Bao Zhifeng3ORCID

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, Jiangjun Road, Nanjing, China

2. Roskilde University, Roskilde, Denmark

3. RMIT University, Melbourne, Australia

Abstract

A multi-attribute trajectory consists of a spatio-temporal trajectory and a set of descriptive attributes. Such data enrich the representation of traditional spatio-temporal trajectories to have comprehensive knowledge of moving objects. Range query is a fundamental operator over multi-attribute trajectories. Such a query contains two predicates, spatio-temporal and attribute, and returns the objects whose locations are within a distance threshold to the query trajectory and attributes contain expected values. There are different execution plans for answering the query. To enhance the capability of a trajectory database, an optimizer is essentially required to (i) accurately estimate the cost for alternative query strategies in terms of disk accesses, (ii) build a decision-making module that automatically sorts the data in an appropriate way and selects the optimal query plan, and (iii) update the analytical models when new trajectories are arrived. The cost model supports both uniform and non-uniform spatio-temporal data distribution and incorporates attribute distribution. The optimizer is fully developed inside a database system kernel and comprehensively evaluated in terms of accuracy and effectiveness by using large real and synthetic datasets.

Funder

NSFC

Natural Science Foundation of Jiangsu Province of China

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference59 articles.

1. [n. d.]. http://factory.datatang.com/en/.

2. M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B. Zdonik. 2012. Learning-based query performance modeling and prediction. In IEEE ICDE. IEEE Computer Society, 390–401.

3. A cost model for query processing in high dimensional data spaces

4. SCOPE

5. Efficient mining of regional movement patterns in semantic trajectories

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3