SCOPE

Author:

Chaiken Ronnie1,Jenkins Bob1,Larson Per-Åke1,Ramsey Bill1,Shakib Darren1,Weaver Simon1,Zhou Jingren1

Affiliation:

1. Microsoft Corporation

Abstract

Companies providing cloud-scale services have an increasing need to store and analyze massive data sets such as search logs and click streams. For cost and performance reasons, processing is typically done on large clusters of shared-nothing commodity machines. It is imperative to develop a programming model that hides the complexity of the underlying system but provides flexibility by allowing users to extend functionality to meet a variety of requirements. In this paper, we present a new declarative and extensible scripting language, SCOPE (Structured Computations Optimized for Parallel Execution), targeted for this type of massive data analysis. The language is designed for ease of use with no explicit parallelism, while being amenable to efficient parallel execution on large clusters. SCOPE borrows several features from SQL. Data is modeled as sets of rows composed of typed columns. The select statement is retained with inner joins, outer joins, and aggregation allowed. Users can easily define their own functions and implement their own versions of operators: extractors (parsing and constructing rows from a file), processors (row-wise processing), reducers (group-wise processing), and combiners (combining rows from two inputs). SCOPE supports nesting of expressions but also allows a computation to be specified as a series of steps, in a manner often preferred by programmers. We also describe how scripts are compiled into efficient, parallel execution plans and executed on large clusters.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 349 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flux: Decoupled Auto-Scaling for Heterogeneous Query Workload in Alibaba AnalyticDB;Companion of the 2024 International Conference on Management of Data;2024-06-09

2. Reactive Dataflow for Inflight Error Handling in ML Workflows;Proceedings of the Eighth Workshop on Data Management for End-to-End Machine Learning;2024-06-09

3. A learned cost model for big data query processing;Information Sciences;2024-06

4. Lero: applying learning-to-rank in query optimizer;The VLDB Journal;2024-04-25

5. PilotScope: Steering Databases with Machine Learning Drivers;Proceedings of the VLDB Endowment;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3