Data-Driven Particle-Based Liquid Simulation with Deep Learning Utilizing Sub-Pixel Convolution

Author:

Tumanov Evgenii1,Korobchenko Dmitry2,Chentanez Nuttapong3

Affiliation:

1. Nvidia, Moscow Institute of Physics and Technology, Moscow, Russia

2. Nvidia, Moscow, Russia

3. Nvidia, Bangkok, Thailand

Abstract

In recent years, the performance of neural network inference has been drastically improved. This rapid change has paved the way for research projects focusing on accelerating physics-based simulations by replacing solver with its approximation. In this paper, we propose several efficient architectures of neural networks, which can be used to exploit this idea. The purpose of our research was to specifically target a liquid simulation problem. The central challenge for us was to create an efficient solution capable of approximating Position Based Fluid [Macklin and Müller 2013] solver. It requires the network to produce an accurate output at particles located in a continuous space and be significantly faster than the GPU based simulation. We achieved this by using modern sub-pixel convolution techniques originally used for image super-resolution. In our experiments, our method runs up to 200 times faster than the reference GPU simulation.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference35 articles.

1. Peter W. Battaglia Jessica B. Hamrick Victor Bapst Alvaro Sanchez-Gonzalez Vinicius Zambaldi Mateusz Malinowski Andrea Tacchetti David Raposo Adam Santoro Ryan Faulkner Caglar Gulcehre Francis Song Andrew Ballard Justin Gilmer George Dahl Ashish Vaswani Kelsey Allen Charles Nash Victoria Langston Chris Dyer Nicolas Heess Daan Wierstra Pushmeet Kohli Matt Botvinick Oriol Vinyals Yujia Li and Razvan Pascanu. 2018. Relational inductive biases deep learning and graph networks. arXiv:1806.01261 [cs.LG] Peter W. Battaglia Jessica B. Hamrick Victor Bapst Alvaro Sanchez-Gonzalez Vinicius Zambaldi Mateusz Malinowski Andrea Tacchetti David Raposo Adam Santoro Ryan Faulkner Caglar Gulcehre Francis Song Andrew Ballard Justin Gilmer George Dahl Ashish Vaswani Kelsey Allen Charles Nash Victoria Langston Chris Dyer Nicolas Heess Daan Wierstra Pushmeet Kohli Matt Botvinick Oriol Vinyals Yujia Li and Razvan Pascanu. 2018. Relational inductive biases deep learning and graph networks. arXiv:1806.01261 [cs.LG]

2. Divergence-free smoothed particle hydrodynamics

3. Animation and rendering of complex water surfaces

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3