Learning Physics with a Hierarchical Graph Network

Author:

Chentanez Nuttapong12ORCID,Jeschke Stefan1ORCID,Müller Matthias1ORCID,Macklin Miles1ORCID

Affiliation:

1. NVIDIA

2. Department of Computer Engineering, Faculty of Engineering Chulalongkorn University

Abstract

AbstractWe propose a hierarchical graph for learning physics and a novel way to handle obstacles. The finest level of the graph consist of the particles itself. Coarser levels consist of the cells of sparse grids with successively doubling cell sizes covering the volume occupied by the particles. The hierarchical structure allows for the information to propagate at great distance in a single message passing iteration. The novel obstacle handling allows the simulation to be obstacle aware without the need for ghost particles. We train the network to predict effective acceleration produced by multiple sub‐steps of 3D multi‐material material point method (MPM) simulation consisting of water, sand and snow with complex obstacles. Our network produces lower error, trains up to 7.0X faster and inferences up to 11.3X faster than [SGGP*20]. It is also, on average, about 3.7X faster compared to Taichi Elements simulation running on the same hardware in our tests.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference57 articles.

1. BattagliaP. W. HamrickJ. B. BapstV. Sanchez‐GonzalezA. ZambaldiV. F. MalinowskiM. TacchettiA. RaposoD. SantoroA. FaulknerR. Çaglar Gülçehre SongH. F. BallardA. J. GilmerJ. DahlG. E. VaswaniA. AllenK. R. NashC. LangstonV. DyerC. HeessN. M. O. WierstraD. KohliP. BotvinickM. M. VinyalsO. LiY. PascanuR.: Relational inductive biases deep learning and graph networks.ArXiv abs/1806.01261(2018). 3

2. ChenP. Y. ChiaramonteM. GrinspunE. CarlbergK.:Model reduction for the material point method via an implicit neural representation of the deformation map 2021. URL:https://arxiv.org/abs/2109.12390

3. doi:10.48550/ARXIV.2109.12390. 2

4. A momentum-conserving implicit material point method for surface tension with contact angles and spatial gradients

5. doi:10.1145/3450626.3459874. 2

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3