Maximizing Quality of Coverage under Connectivity Constraints in Solar-Powered Active Wireless Sensor Networks

Author:

Gaudette Benjamin1,Hanumaiah Vinay1,Krunz Marwan2,Vrudhula Sarma1

Affiliation:

1. Arizona State University, Tempe, AZ

2. University of Arizona, Tucson, AZ

Abstract

Energy harvesting is a promising solution for reducing network maintenance and the overhead of replacing chemical batteries in sensor networks. In this article, problems related to controlling an active wireless sensor network comprised of nodes powered by both rechargeable batteries and solar energy are investigated. The objective of this control is to maximize the network's Quality of Coverage (QoC), defined as the minimum number of targets that can be covered by the network over a 24-hour period. Assuming a time-varying solar profile, the underlying problem is to optimally control the sensing range of each sensor so as to maximize the QoC. The problem is further constrained by requiring all active sensors to report any sensed data to a centralized base station, making connectivity a key factor in sensor management. Implicit in the solution is the allocation of solar energy during the day to sensing tasks and recharging of the battery so that a minimum coverage is guaranteed at all times. The problem turns out to be a nonlinear optimal control problem of high complexity. By exploiting the particular structure of the problem, we present a novel method for determining near-optimal sensing radii and routing paths as a series of quasiconvex (unimodal) optimization problems. The runtime of the proposed solution is 60X less than the standard optimal control method based on dynamic programming, while the worst-case error is less than 8%. The proposed method is scalable to large networks consisting of hundreds of sensors and targets. Several insights in the design of energy-harvesting networks are provided.

Funder

Science Foundation Arizona

Division of Computer and Network Systems

Division of Industrial Innovation and Partnerships

Stardust Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3