DHPA

Author:

Pan Menghai1ORCID,Huang Weixiao1,Li Yanhua1ORCID,Zhou Xun2,Liu Zhenming3,Song Rui4,Lu Hui5,Tian Zhihong5,Luo Jun6

Affiliation:

1. Worcester Polytechnic Institute

2. University of Iowa

3. College of William 8 Mary

4. North Carolina State University

5. Guangzhou University

6. Lenovo Group Limited

Abstract

Many real-world human behaviors can be modeled and characterized as sequential decision-making processes, such as a taxi driver’s choices of working regions and times. Each driver possesses unique preferences on the sequential choices over time and improves the driver’s working efficiency. Understanding the dynamics of such preferences helps accelerate the learning process of taxi drivers. Prior works on taxi operation management mostly focus on finding optimal driving strategies or routes, lacking in-depth analysis on what the drivers learned during the process and how they affect the performance of the driver. In this work, we make the first attempt to establish Dynamic Human Preference Analytics. We inversely learn the taxi drivers’ preferences from data and characterize the dynamics of such preferences over time. We extract two types of features (i.e., profile features and habit features) to model the decision space of drivers. Then through inverse reinforcement learning, we learn the preferences of drivers with respect to these features. The results illustrate that self-improving drivers tend to keep adjusting their preferences to habit features to increase their earning efficiency while keeping the preferences to profile features invariant. However, experienced drivers have stable preferences over time. The exploring drivers tend to randomly adjust the preferences over time.

Funder

DiDi Chuxing Inc.

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference31 articles.

1. OpenStreetMap. [n.d.]. Home Page. Retrieved November 23 2019 from http://www.openstreetmap.org/ OpenStreetMap. [n.d.]. Home Page. Retrieved November 23 2019 from http://www.openstreetmap.org/

2. A Markovian decision process;Bellman Richard;Journal of Mathematics and Mechanics,1957

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3