Affiliation:
1. Worcester Polytechnic Institute
2. University of Iowa
3. College of William 8 Mary
4. North Carolina State University
5. Guangzhou University
6. Lenovo Group Limited
Abstract
Many real-world human behaviors can be modeled and characterized as sequential decision-making processes, such as a taxi driver’s choices of working regions and times. Each driver possesses unique preferences on the sequential choices over time and improves the driver’s working efficiency. Understanding the dynamics of such preferences helps accelerate the learning process of taxi drivers. Prior works on taxi operation management mostly focus on finding optimal driving strategies or routes, lacking in-depth analysis on what the drivers learned during the process and how they affect the performance of the driver. In this work, we make the first attempt to establish Dynamic Human Preference Analytics. We inversely learn the taxi drivers’ preferences from data and characterize the dynamics of such preferences over time. We extract two types of features (i.e., profile features and habit features) to model the decision space of drivers. Then through inverse reinforcement learning, we learn the preferences of drivers with respect to these features. The results illustrate that self-improving drivers tend to keep adjusting their preferences to habit features to increase their earning efficiency while keeping the preferences to profile features invariant. However, experienced drivers have stable preferences over time. The exploring drivers tend to randomly adjust the preferences over time.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Reference31 articles.
1. OpenStreetMap. [n.d.]. Home Page. Retrieved November 23 2019 from http://www.openstreetmap.org/ OpenStreetMap. [n.d.]. Home Page. Retrieved November 23 2019 from http://www.openstreetmap.org/
2. A Markovian decision process;Bellman Richard;Journal of Mathematics and Mechanics,1957
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献