On the Use of Intelligent Models towards Meeting the Challenges of the Edge Mesh

Author:

Oikonomou Panagiotis1,Karanika Anna1,Anagnostopoulos Christos2,Kolomvatsos Kostas1ORCID

Affiliation:

1. Department of Computer Science and Telecommunications, University of Thessaly, Lamia Greece

2. School of Computing Science, University of Glasgow, Glasgow UK

Abstract

Nowadays, we are witnessing the advent of the Internet of Things (IoT) with numerous devices performing interactions between them or with their environment. The huge number of devices leads to huge volumes of data that demand the appropriate processing. The “legacy” approach is to rely on Cloud where increased computational resources can realize any desired processing. However, the need for supporting real-time applications requires a reduced latency in the provision of outcomes. Edge Computing (EC) comes as the “solver” of the latency problem. Various processing activities can be performed at EC nodes having direct connection with IoT devices. A number of challenges should be met before we conclude a fully automated ecosystem where nodes can cooperate or understand their status to efficiently serve applications. In this article, we perform a survey of the relevant research activities towards the vision of Edge Mesh (EM), i.e., a “cover” of intelligence upon the EC. We present the necessary hardware and discuss research outcomes in every aspect of EC/EM nodes functioning. We present technologies and theories adopted for data, tasks, and resource management while discussing how machine learning and optimization can be adopted in the domain.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3