Intelligent Edge-powered Data Reduction: A Systematic Literature Review

Author:

Pioli Laércio1ORCID,de Macedo Douglas D. J.1ORCID,Costa Daniel G.2ORCID,Dantas Mario A. R.3ORCID

Affiliation:

1. Federal University of Santa Catarina, Florianopolis, Brazil

2. University of Porto, Porto, Portugal

3. Federal University of Juiz de Fora, Juiz de Fora, Brazil

Abstract

The development of the Internet of Things (IoT) paradigm and its significant spread as an affordable data source has brought many challenges when pursuing efficient data collection, distribution, and storage. Since such hierarchical logical architecture can be inefficient and costly in many cases, Data Reduction (DR) solutions have arisen to allow data preprocessing before actual transmission. To increase DR performance, researchers are using Artificial Intelligence (AI) techniques and models toward reducing sensed data volume. AI for DR on the edge is investigated in this study in the form of a Systematic Literature Review (SLR) encompassing major issues such as data heterogeneity and AI-based techniques to reduce data, architectures, and contexts of usage. An SLR is conducted to map the state of the art in this area, highlighting the most common challenges and potential research trends in addition to a proposed taxonomy.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001

Publisher

Association for Computing Machinery (ACM)

Reference108 articles.

1. Noor Ahmad and Ali Bou Nassif. 2022. Dimensionality reduction: Challenges and solutions. In ITM Web of Conferences, Vol. 43. EDP Sciences, 01017.

2. An online model to minimize energy consumption of IoT sensors in smart cities;Al-Hawawreh Muna;IEEE Sensors Journal,2022

3. Abeer Z. Al-Marridi, Amr Mohamed, and Aiman Erbad. 2018. Convolutional autoencoder approach for EEG compression and reconstruction in m-health systems. In 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC’18). IEEE, 370–375.

4. Atheer Alahmed, Amal Alrasheedi, Maha Alharbi, Norah Alrebdi, Marwan Aleasa, and Tarek Moulahi. 2020. Machine learning for real-time data reduction in cloud of things. In 2020 2nd International Conference on Computer and Information Sciences (ICCIS’20). IEEE, 1–6.

5. An energy efficient IoT data compression approach for edge machine learning;Azar Joseph;Future Generation Computer Systems,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3