RNNFast

Author:

Samavatian Mohammad Hossein1,Bacha Anys2,Zhou Li1,Teodorescu Radu1ORCID

Affiliation:

1. The Ohio State University, Neil Ave., Columbus, OH, USA

2. University of Michigan, Dearborn, MI, USA

Abstract

Recurrent Neural Networks (RNNs) are an important class of neural networks designed to retain and incorporate context into current decisions. RNNs are particularly well suited for machine learning problems in which context is important, such as speech recognition and language translation. This work presents RNNFast, a hardware accelerator for RNNs that leverages an emerging class of non-volatile memory called domain-wall memory (DWM). We show that DWM is very well suited for RNN acceleration due to its very high density and low read/write energy. At the same time, the sequential nature of input/weight processing of RNNs mitigates one of the downsides of DWM, which is the linear (rather than constant) data access time. RNNFast is very efficient and highly scalable, with flexible mapping of logical neurons to RNN hardware blocks. The basic hardware primitive, the RNN processing element (PE), includes custom DWM-based multiplication, sigmoid and tanh units for high density and low energy. The accelerator is designed to minimize data movement by closely interleaving DWM storage and computation. We compare our design with a state-of-the-art GPGPU and find 21.8× higher performance with 70× lower energy.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Reference75 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RansomShield: A Visualization Approach to Defending Mobile Systems Against Ransomware;ACM Transactions on Privacy and Security;2023-03-13

2. Voice Keyword Spotting on Edge Devices;2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT);2022-11-26

3. Keyword Spotting with Deep Neural Network on Edge Devices;2022 IEEE 12th International Conference on Electronics Information and Emergency Communication (ICEIEC);2022-07-15

4. Fast-track cache;Proceedings of the 36th ACM International Conference on Supercomputing;2022-06-28

5. Low power multiplier based long short-term memory hardware architecture for smart grid energy management;International Journal of System Assurance Engineering and Management;2022-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3