Virtualized and flexible ECC for main memory

Author:

Yoon Doe Hyun1,Erez Mattan1

Affiliation:

1. The University of Texas at Austin, Austin, TX, USA

Abstract

We present a general scheme for virtualizing main memory error-correction mechanisms, which map redundant information needed to correct errors into the memory namespace itself. We rely on this basic idea, which increases flexibility to increase error protection capabilities, improve power efficiency, and reduce system cost; with only small performance overheads. We augment the virtual memory system architecture to detach the physical mapping of data from the physical mapping of its associated ECC information. We then use this mechanism to develop two-tiered error protection techniques that separate the process of detecting errors from the rare need to also correct errors, and thus save energy. We describe how to provide strong chipkill and double-chip kill protection using existing DRAM and packaging technology. We show how to maintain access granularity and redundancy overheads, even when using ×8 DRAM chips. We also evaluate error correction for systems that do not use ECC DIMMs. Overall, analysis of demanding SPEC CPU 2006 and PARSEC benchmarks indicates that performance overhead is only 1% with ECC DIMMs and less than 10% using standard Non-ECC DIMM configurations, that DRAM power savings can be as high as 27%, and that the system energy-delay product is improved by 12% on average.

Publisher

Association for Computing Machinery (ACM)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Innovations in the Memory System;Synthesis Lectures on Computer Architecture;2019-09-10

2. ReveNAND;ACM Transactions on Architecture and Code Optimization;2018-06-22

3. Odd-ECC;Proceedings of the International Symposium on Memory Systems;2017-10-02

4. Compiler-Directed Soft Error Detection and Recovery to Avoid DUE and SDC via Tail-DMR;ACM Transactions on Embedded Computing Systems;2017-05-31

5. SPMCloud;ACM Transactions on Design Automation of Electronic Systems;2014-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3