Kernel-based Methods for Bandit Convex Optimization

Author:

Bubeck Sébastien1,Eldan Ronen2,Lee Yin Tat3

Affiliation:

1. Microsoft Research, USA

2. Weizmann Institute of Science, Israel

3. University of Washington, USA

Abstract

We consider the adversarial convex bandit problem and we build the first poly( T )-time algorithm with poly( n ) √ T -regret for this problem. To do so, we introduce three new ideas in the derivative-free optimization literature: (i) kernel methods, (ii) a generalization of Bernoulli convolutions, and (iii) a new annealing schedule for exponential weights (with increasing learning rate). The basic version of our algorithm achieves Õ( n 9.5T )-regret, and we show that a simple variant of this algorithm can be run in poly( n log ( T ))-time per step (for polytopes with polynomially many constraints) at the cost of an additional poly( n ) T o(1) factor in the regret. These results improve upon the Õ( n 11T -regret and exp (poly( T ))-time result of the first two authors and the log ( T ) poly( n ) T -regret and log( T ) poly( n ) -time result of Hazan and Li. Furthermore, we conjecture that another variant of the algorithm could achieve Õ( n 1.5T )-regret, and moreover that this regret is unimprovable (the current best lower bound being Ω ( nT ) and it is achieved with linear functions). For the simpler situation of zeroth order stochastic convex optimization this corresponds to the conjecture that the optimal query complexity is of order n 3 / ɛ 2 .

Funder

European Research Council Starting Grant

Israel Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3