The Online Saddle Point Problem and Online Convex Optimization with Knapsacks

Author:

Rivera Cardoso Adrian1ORCID,Wang He2ORCID,Xu Huan3ORCID

Affiliation:

1. LinkedIn Corporation, Sunnyvale, California 94085;

2. School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;

3. Alibaba Inc., Hangzhou 311121, China

Abstract

We study the online saddle point problem, an online learning problem where at each iteration, a pair of actions needs to be chosen without knowledge of the current and future (convex-concave) payoff functions. The objective is to minimize the gap between the cumulative payoffs and the saddle point value of the aggregate payoff function, which we measure using a metric called saddle point regret (SP-Regret). The problem generalizes the online convex optimization framework, but here, we must ensure that both players incur cumulative payoffs close to that of the Nash equilibrium of the sum of the games. We propose an algorithm that achieves SP-Regret proportional to [Formula: see text] in the general case, and [Formula: see text] SP-Regret for the strongly convex-concave case. We also consider the special case where the payoff functions are bilinear and the decision sets are the probability simplex. In this setting, we are able to design algorithms that reduce the bounds on SP-Regret from a linear dependence in the dimension of the problem to a logarithmic one. We also study the problem under bandit feedback and provide an algorithm that achieves sublinear SP-Regret. We then consider an online convex optimization with knapsacks problem motivated by a wide variety of applications, such as dynamic pricing, auctions, and crowdsourcing. We relate this problem to the online saddle point problem and establish [Formula: see text] regret using a primal-dual algorithm.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3