Boosting monte carlo rendering by ray histogram fusion

Author:

Delbracio Mauricio1,Musé Pablo2,Buades Antoni3,Chauvier Julien4,Phelps Nicholas4,Morel Jean-Michel5

Affiliation:

1. ENS-Cachan, France and Universidad de la República, Uruguay

2. Universidad de la República, Uruguay

3. ENS-Cachan France and Universitat de les Illes Balears, Spain

4. e-on software

5. ENS-Cachan, France

Abstract

This article proposes a new multiscale filter accelerating Monte Carlo renderer. Each pixel in the image is characterized by the colors of the rays that reach its surface. The proposed filter uses a statistical distance to compare with each other the ray color distributions associated with different pixels, at each scale. Based on this distance, it decides whether two pixels can share their rays or not. This simple and easily reproducible algorithm provides a psnr gain of 10 to 15 decibels, or equivalently accelerates the rendering process by using 10 to 30 times fewer samples without observable bias. The algorithm is consistent, does not assume a particular noise model, and is immediately extendable to synthetic movies. Being based on the ray color values only, it can be combined with all rendering effects.

Funder

Office of Naval Research

Region de France

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Denoising 1SPP Monte carlo renderings based on human visual perception;Third International Conference on Electronic Information Engineering and Data Processing (EIEDP 2024);2024-07-05

2. Dual Channel Residual Learning for Denoising Path Tracing;International Journal of Image and Graphics;2024-01-15

3. RT-Octree: Accelerate PlenOctree Rendering with Batched Regular Tracking and Neural Denoising for Real-time Neural Radiance Fields;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

4. Neural Partitioning Pyramids for Denoising Monte Carlo Renderings;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Proceedings;2023-07-23

5. Monte Carlo denoising via auxiliary feature guided self-attention;ACM Transactions on Graphics;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3