Dual Channel Residual Learning for Denoising Path Tracing

Author:

Liu Ping1,Ji Hangyu2

Affiliation:

1. School of Animation and Digital Art, Communication University of Zhejiang, Hangzhou 310018, P. R. China

2. Contemporary Music Academy, Xi’an Conservatory of Music, Xi’an 710061, P. R. China

Abstract

In this paper, we present a denoising method for path tracing using residual learning with convolutional neural networks (CNNs). Noisy artifacts in path tracing are inherited from insufficient sampling, which often generates over- or under-exposed values when integrating the limited bright or dark samples in a pixel. In this paper, we introduce a dual channel residual learning CNNs which separates the over and under-exposed signals in order to provide an efficient denoising filter for the path tracing rendering. Furthermore, we present an advanced CNN comprised of variable-sized kernels in each convolutional layer. Our CNN detects features in different scales providing an adaptive denoising filter capability which is optimal for extracting various contextual details in a complex scene. The experiments demonstrate that our method generates better visual quality than other compared approaches across various rendering effects.

Funder

Communication University of Zhejiang

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3