Keeping the Data Lake in Form

Author:

Alserafi Ayman1,Abelló Alberto2,Romero Oscar2,Calders Toon3

Affiliation:

1. Universitat Politècnica de Catalunya and Université Libre de Bruxelles, Bruxelles, Belgium

2. Universitat Politècnica de Catalunya, Barcelona, Catalunya, Spain

3. Université Libre de Bruxelles and Universiteit Antwerpen, Antwerpen, Belgium

Abstract

Data lakes (DLs) are large repositories of raw datasets from disparate sources. As more datasets are ingested into a DL, there is an increasing need for efficient techniques to profile them and to detect the relationships among their schemata, commonly known as holistic schema matching . Schema matching detects similarity between the information stored in the datasets to support information discovery and retrieval. Currently, this is computationally expensive with the volume of state-of-the-art DLs. To handle this challenge, we propose a novel early-pruning approach to improve efficiency, where we collect different types of content metadata and schema metadata about the datasets, and then use this metadata in early-pruning steps to pre-filter the schema matching comparisons. This involves computing proximities between datasets based on their metadata, discovering their relationships based on overall proximities and proposing similar dataset pairs for schema matching. We improve the effectiveness of this task by introducing a supervised mining approach for effectively detecting similar datasets that are proposed for further schema matching. We conduct extensive experiments on a real-world DL that proves the success of our approach in effectively detecting similar datasets for schema matching, with recall rates of more than 85% and efficiency improvements above 70%. We empirically show the computational cost saving in space and time by applying our approach in comparison to instance-based schema matching techniques.

Funder

Erasmus+

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3