A Recommender Approach to Enable Effective and Efficient Self-Service Analytics in Data Lakes

Author:

Stach ChristophORCID,Eichler Rebecca,Schmidt Simone

Abstract

AbstractAs a result of the paradigm shift away from rather rigid data warehouses to general-purpose data lakes, fully flexible self-service analytics is made possible. However, this also increases the complexity for domain experts who perform these analyses, since comprehensive data preparation tasks have to be implemented for each data access. For this reason, we developed BARENTS, a toolset that enables domain experts to specify data preparation tasks as ontology rules, which are then applied to the data involved. Although our evaluation of BARENTS showed that it is a valuable contribution to self-service analytics, a major drawback is that domain experts do not receive any semantic support when specifying the rules. In this paper, we therefore address how a recommender approach can provide additional support to domain experts by identifying supplementary datasets that might be relevant for their analyses or additional data processing steps to improve data refinement. This recommender operates on the set of data preparation rules specified in BARENTS—i.e., the accumulated knowledge of all domain experts is factored into the data preparation for each new analysis. Evaluation results indicate that such a recommender approach further contributes to the practicality of BARENTS and thus represents a step towards effective and efficient self-service analytics in data lakes.

Funder

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3