Edge-Assisted Control for Healthcare Internet of Things

Author:

Anzanpour Arman1ORCID,Amiri Delaram2,Azimi Iman1,Levorato Marco3,Dutt Nikil3,Liljeberg Pasi1,Rahmani Amir M.3

Affiliation:

1. University of Turku, Finland

2. University of California, Irvine

3. University of California, Irvine, USA

Abstract

Recent advances in pervasive Internet of Things technologies and edge computing have opened new avenues for development of ubiquitous health monitoring applications. Delivering an acceptable level of usability and accuracy for these healthcare Internet of Things applications requires optimization of both system-driven and data-driven aspects, which are typically done in a disjoint manner. Although decoupled optimization of these processes yields local optima at each level, synergistic coupling of the system and data levels can lead to a holistic solution opening new opportunities for optimization. In this article, we present an edge-assisted resource manager that dynamically controls the fidelity and duration of sensing w.r.t. changes in the patient’s activity and health state, thus fine-tuning the trade-off between energy efficiency and measurement accuracy. The cornerstone of our proposed solution is an intelligent low-latency real-time controller implemented at the edge layer that detects abnormalities in the patient’s condition and accordingly adjusts the sensing parameters of a reconfigurable wireless sensor node. We assess the efficiency of our proposed system via a case study of the photoplethysmography-based medical early warning score system. Our experiments on a real full hardware-software early warning score system reveal up to 49% power savings while maintaining the accuracy of the sensory data.

Funder

US National Science Foundation

Academy of Finland

Publisher

Association for Computing Machinery (ACM)

Reference79 articles.

1. Cognitive machine-to-machine communications for Internet of Things: A protocol stack perspective; al A. Aijaz;IEEE Internet of Things,2015

2. Photoplethysmography and its application in clinical physiological measurement

3. Context-aware sensing via dynamic programming for edge-assisted wearable systems; al Delaram Amiri;ACM Transactions on Computing for Healthcare,2020

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3