ML-Based Identification of Neuromuscular Disorder Using EMG Signals for Emotional Health Application

Author:

Achmamad Abdelouahad1,Elfezazi Mohamed1,Chehri Abdellah2,Ahmed Imran3,Jbari Atman4,Saadane Rachid5

Affiliation:

1. Electronic Systems Sensors and Nano-Biotechnologies, National Graduate School of Arts and Crafts (ENSAM) in Rabat, Morocco

2. Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, ON, K7K 7B4, Canada

3. Anglia Ruskin University, United Kingdom

4. Mohammed V University in Rabat, Morocco

5. SIRC- (LaGeS), Hassania School of Public Works in Casablanca, Morocco

Abstract

Abstract: The electromyogram (EMG), also known as an EMG, is used to assess nerve impulses in motor nerves, sensory nerves, and muscles. EMS is a versatile tool used in various biomedical applications. It is commonly employed to determine physical health, but it also finds utility in evaluating emotional well-being, such as through facial electromyography. Classification of EMG signals has attracted the interest of scientists since it is crucial for identifying neuromuscular disorders (NMDs). Recent advances in the miniaturization of biomedical sensors enable the development of medical monitoring systems. This paper presents a portable and scalable architecture for machine learning modules designed for medical diagnostics. In particular, we provide a hybrid classification model for NMDs. The proposed method combines two supervised machine learning classifiers with the discrete wavelet transform (DWT). During the online testing phase, the class label of an EMG signal is predicted using the classifiers’ optimal models, which can be identified at this stage. The simulation results demonstrate that both classifiers have an accuracy of over 98%. Finally, the proposed method was implemented using an embedded CompactRIO-9035 real-time controller.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3