Affiliation:
1. Georgia State University
2. Voorhees College
Abstract
Assimilating real-time sensor data into large-scale spatial-temporal simulations, such as simulations of wildfires, is a promising technique for improving simulation results. This asks for advanced data assimilation methods that can work with the complex structures and nonlinear behaviors associated with the simulation models. This article presents a data assimilation framework using Sequential Monte Carlo (SMC) methods for wildfire spread simulations. The models and algorithms of the framework are described, and experimental results are provided. This work demonstrates the feasibility of applying SMC methods to data assimilation of wildfire spread simulations. The developed framework can potentially be generalized to other application areas where sophisticated simulation models are used.
Funder
Division of Computer and Network Systems
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,Modeling and Simulation
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献