Affiliation:
1. Department of Computer Science, Georgia State University, USA
Abstract
The increasing availability of real-time data collected from dynamic systems brings opportunities for simulation models to be calibrated online for improving the accuracy of simulation-based studies. Systematical methods are needed for assimilating real-time measurement data into simulation models. This paper presents a particle filter-based data assimilation method to support online model calibration in discrete event simulation. A joint state-parameter estimation problem is defined, and a particle filter-based data assimilation algorithm is presented. The developed method is applied to a discrete event simulation of a one-way traffic control system. Experiments results demonstrate the effectiveness of the developed method for calibrating simulation models’ parameters in real time and for improving data assimilation results.
Funder
National Institute of Food and Agriculture
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献