Traffic-aware reconfigurable architecture for fault-tolerant 2D mesh NoCs

Author:

Bahrebar Poona1,Stroobandt Dirk1

Affiliation:

1. Ghent University, Belgium

Abstract

With the aggressive scaling of the VLSI technology, Networks-on-Chip (NoCs) are becoming more susceptible to faults. Therefore, designing reliable and efficient NoCs is of significant importance. The rerouting approach which is employed in most of the fault-tolerant methods causes the network performance to degrade considerably due to taking longer paths and creating hotspots around the faults. Moreover, they cannot adapt to the dynamic traffic distribution in the network. Considering the increasing demands for real-time systems, the necessity for designing reconfigurable and robust NoCs is even more pronounced. In this paper, a dynamically reconfigurable technique is proposed to address fault-tolerance and minimal routing in mesh NoCs. To accomplish this goal, the router architecture is modified to enable the frequently communicating nodes to bypass the faulty router and communicate through shorter paths. Thus, not only the rerouting is minimized, the connectivity of the network is maintained in the vicinity of faults. The experimental results validate the performance and reliability of the proposed technique with a small hardware overhead.

Publisher

Association for Computing Machinery (ACM)

Subject

Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RMC_NoC: A Reliable On-Chip Network Architecture With Reconfigurable Multifunctional Channel;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2023-12

2. Low‐cost regional‐based congestion‐aware routing algorithm for 2D mesh NoC;International Journal of Communication Systems;2022-10

3. A Review of Design Approaches for Enhancing the Performance of NoCs at Communication Centric Level;Scalable Computing: Practice and Experience;2021-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3