A Review of Design Approaches for Enhancing the Performance of NoCs at Communication Centric Level

Author:

Manzoor Misbah,Mir Roohie Naaz,Hakim Najeeb-ud-Din

Abstract

As the trend of technology shrinking continues a vast amount of processors are being incorporated in a limited space. Due to this almost half of the chip area in Multi-Processor Systems-on-Chips (MPSoCs) is under interconnections, which pose a big problem for communication. Network-on-Chips (NoCs) evolved as a significant scalable solution for removing wiring congestion and communication problem in MPSoCs. NoCs provide the advantage of customized architecture, increased scalability and bandwidth. NoC is a structured framework where communication is the prime concern. In this review paper we present an overview of research and design approaches in the communication centric areas of NoCs. Here we have tried to discuss and iterate most of the available work done for communication in 2D NoCs. This paper gives the insight of different attributes and performance parameters of NoCs. Further it gives a detailed description of how topology, flow control and routing mechanisms can affect the qualitative aspects (performance) of NoCs. It then explains how various attributes of routing can help in increasing the efficacy of NoCs. Subsequently a brief review of different simulators used for NoCs is given. All of this is provided based on the survey of academic, theoretical and experimental approaches presented in the past. Finally some suggestions for future work are also given.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Virtualization of Hardware Accelerators in a Network-on-Chip;2023 26th Euromicro Conference on Digital System Design (DSD);2023-09-06

2. Navigability, Walkability, and Perspicacity Associated with Canonical Ensembles of Walks in Finite Connected Undirected Graphs—Toward Information Graph Theory;Information;2023-06-15

3. Incorporating MPLS for Better SoC Utilization and Traffic Engineering;2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC);2022-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3