RSS: Effective and Efficient Training for Sequential Recommendation using Recency Sampling

Author:

Petrov Aleksandr1,Macdonald Craig1

Affiliation:

1. University of Glasgow, United Kingdom

Abstract

Many modern sequential recommender systems use deep neural networks, which can effectively estimate the relevance of items, but require a lot of time to train. Slow training increases the costs of training, hinders product development timescales and prevents the model from being regularly updated to adapt to changing user preferences. The training of such sequential models involves appropriately sampling past user interactions to create a realistic training objective. The existing training objectives have limitations. For instance, next item prediction never uses the beginning of the sequence as a learning target, thereby potentially discarding valuable data. On the other hand, the item masking used by the state-of-the-art BERT4Rec recommender model is only weakly related to the goal of the sequential recommendation; therefore, it requires much more time to obtain an effective model. Hence, we propose a novel Recency-based Sampling of Sequences (RSS) training objective (which is parameterized by a choice of recency importance function) that addresses both limitations. We apply our method to various recent and state-of-the-art model architectures – such as GRU4Rec, Caser, and SASRec. We show that the models enhanced with our method can achieve performances exceeding or very close to the effective BERT4Rec, but with much less training time. For example, on the MovieLens-20M dataset, RSS applied to the SASRec model can result in a 60% improvement in NDCG over a vanilla SASRec, and a 16% improvement over a fully-trained BERT4Rec model, despite taking 93% less training time than BERT4Rec. We also experiment with two families of recency importance functions and show that they perform similarly. We further empirically demonstrate that RSS-enhanced SASRec successfully learns to distinguish differences between recent and older interactions – a property that the original SASRec model does not exhibit. Overall, we show that RSS is a viable (and frequently better) alternative to the existing training objectives, which is both effective and efficient for training sequential recommender model when the computational resources for training are limited.

Publisher

Association for Computing Machinery (ACM)

Reference64 articles.

1. Martín Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , et al. 2016 . TensorFlow: A system for large-scale machine learning . In Proc. USENIX. 265–283 . Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. TensorFlow: A system for large-scale machine learning. In Proc. USENIX. 265–283.

2. KATRec: Knowledge Aware aTtentive Sequential Recommendations

3. Contrastive Curriculum Learning for Sequential User Behavior Modeling via Data Augmentation

4. From RankNet to LambdaRank to LambdaMART: An overview;Burges JC;Learning,2010

5. On Target Item Sampling in Offline Recommender System Evaluation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3