Incentive and Dynamic Client Selection for Federated Unlearning

Author:

Lin Yijing1ORCID,Gao Zhipeng1ORCID,Du Hongyang2ORCID,Niyato Dusit2ORCID,Kang Jiawen3ORCID,Liu Xiaoyuan4ORCID

Affiliation:

1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China

2. Nanyang Technological University, Singapore, Singapore

3. Guangdong University of Technology, Guangzhou, China

4. University of Electronic Science and Technology of China, Chengdu, China

Funder

National Natural Science Foundation of China

Publisher

ACM

Reference26 articles.

1. Collaborating With ChatGPT: Considering the Implications of Generative Artificial Intelligence for Journalism and Media Education

2. A survey;Xu Heng;ACM Computing Surveys,2023

3. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273--1282. PMLR, 2017.

4. FedEraser: Enabling Efficient Client-Level Data Removal from Federated Learning Models

5. The Right to be Forgotten in Federated Learning: An Efficient Realization with Rapid Retraining

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3