Sound Non-Statistical Clustering of Static Analysis Alarms

Author:

Lee Woosuk1,Lee Wonchan2,Kang Dongok1,Heo Kihong1,Oh Hakjoo3,Yi Kwangkeun1

Affiliation:

1. Seoul National University, Seoul, Korea

2. Stanford University

3. Korea University, Seongbuk-gu, Seoul, Korea

Abstract

We present a sound method for clustering alarms from static analyzers. Our method clusters alarms by discovering sound dependencies between them such that if the dominant alarms of a cluster turns out to be false, all the other alarms in the same cluster are guaranteed to be false. We have implemented our clustering algorithm on top of a realistic buffer-overflow analyzer and proved that our method reduces 45% of alarm reports. Our framework is applicable to any abstract interpretation-based static analysis and orthogonal to abstraction refinements and statistical ranking schemes.

Funder

Engineering Research Center of Excellence Program of Korea Ministry of Science, ICT 8 Future Planning( MSIP) / National Research Foundation of Kore

Development of Vulnerability Discovery Technologies for IoT Software Security

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT 8 Future Planning

Institute for Information 8 communications Technology Promotion (IITP) grant funded by the Korea government

Samsung Electronics Software Center

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mitigating False Positive Static Analysis Warnings: Progress, Challenges, and Opportunities;IEEE Transactions on Software Engineering;2023-12

2. Can the configuration of static analyses make resolving security vulnerabilities more effective? - A user study;Empirical Software Engineering;2023-09

3. A Multi-Feature Fusion-Based Automatic Detection Method for High-Severity Defects;Electronics;2023-07-14

4. ViolationTracker: Building Precise Histories for Static Analysis Violations;2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE);2023-05

5. An Empirical Assessment on Merging and Repositioning of Static Analysis Alarms;2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3