Fulfilling OCaml Modules with Transparency

Author:

Clement Blaudeau1ORCID,Rémy Didier2ORCID,Radanne Gabriel3ORCID

Affiliation:

1. Inria, Paris, France / Université de Paris Cité, Paris, France

2. Inria, Paris, France

3. Inria, Lyon, France

Abstract

ML modules come as an additional layer on top of a core language to offer large-scale notions of composition and abstraction. They largely contributed to the success of OCaml and SML. While modules are easy to write for common cases, their advanced use may become tricky. Additionally, despite a long line of works, their meta-theory remains difficult to comprehend, with involved soundness proofs. In fact, the module layer of OCaml does not currently have a formal specification and its implementation has some surprising behaviors. Building on previous translations from ML modules to Fω, we propose a type system, called Mω, that covers a large subset of OCaml modules, including both applicative and generative functors, and extended with transparent ascription. This system produces signatures in an OCaml-like syntax extended with Fω quantifiers. We provide a reverse translation from Mω signatures to path-based source signatures along with a characterization of signature avoidance cases, making Mω signatures well suited to serve as a new internal representation for a typechecker. The soundness of the type system is shown by elaboration in Fω. We improve over previous encodings of sealing within applicative functors, by the introduction of transparent existential types, a weaker form of existential types that can be lifted out of universal and arrow types. This shines a new light on the form of abstraction provided by applicative functors and brings their treatment much closer to those of generative functors.

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fulfilling OCaml Modules with Transparency;Proceedings of the ACM on Programming Languages;2024-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3