Author:
KITA Eisuke,Harada Masaaki,Mizuno Takao
Abstract
Authors present the stock price prediction algorithm by using Bayesian network. The present algorithm uses the networktwice. First, the network is determined from the daily stock price and then, it is applied for predicting the daily stock pricewhich was already observed. The prediction error is evaluated from the daily stock price and its prediction. Second, thenetwork is determined again from both the daily stock price and the daily prediction error and then, it is applied for thefuture stock price prediction. The present algorithm is applied for predicting NIKKEI stock average and Toyota motorcorporation stock price. Numerical results show that the maximum prediction error of the present algorithm is 30% inNIKKEI stock average and 20% in Toyota Motor Corporation below that of the time-series prediction algorithms such asAR, MA, ARMA and ARCH models.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献