Influence of impact-centrifugal hardener on microhardness of workpiece surface made of aluminium alloys

Author:

Kazimirov D. Yu.1ORCID,Isachenko A. S.1ORCID

Affiliation:

1. Irkutsk National Research Technical University

Abstract

This  article  develops  a  tool  for  impact-centrifugal  processing  and  establishes  processing  modes  that increase the microhardness of the surface. An experimental study was carried out, where the tightening force, the number of working strokes, the rotation frequency of the hardener and the motion were proposed as technological parameters of impact-centrifugal processing. The experiments were carried out using flat machine-cut samples based on aluminium alloy D16T. A prototype of the rotary hardener with the standard fastening was designed and manufactured. During the experiment, it was revealed that, for the variation in average microhardness, the contribution of the rotation frequency is higher than that of the longitudinal motion. A significant influence of the tension on the surface microhardness is noted: following processing with a rotary hardener, it increases. It is shown that, to a greater extent, this increase depends on the technological tightening force and to a lesser extent on the rotation speed of the tool; it is recommended to increase these parameters. It was found that a 2-fold increase in tightening force resulted in an increase in microhardness by 70 HV 0.1, while increasing the tool rotation speed by 200 rpm led to an increase in microhardness by 42 HV 0.1. However, technological parameters must be selected taking into account the operability of the hardener. It was shown that the longitudinal motion has little influence on the increase in microhardness. The prototype of the designed tool can be used for processing at milling, boring, and grinding machines with computerised numerical control through a standardised fastening unit. This ensures sufficient technological flexibility and allows it to be used for reinforcing flat surfaces and fillet radii. The forecasted increase in the surface microhardness of the D16T sample using a rotary hardener amounts to 38.5% of the initial value in the experimental area with satisfactory productivity.

Publisher

Irkutsk National Research Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3