Fibre deformations induced by different mechanical treatments and their effect on zero-span strength

Author:

Zeng Xiling1,Fu Shiyu1,Retulainen Elias2,Heinemann Sabine3

Affiliation:

1. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou city, China

2. VTT Technical Research Centre of Finland, Jyväskylä , Finland

3. VTT Technical Research Centre of Finland, Espoo , Finland

Abstract

Abstract Fibre deformations have a significant effect on fibre strength and sheet properties. There is little information, however, on the kinds of deformations different types of treatments induce and how they affect the fibre strength. In the present study, first-thinning bleached pine kraft pulp was treated with three mechanical devices: a wing defibrator (high consistency treatment), an E-compactor (high consistency treatment) and a conventional Valley beater (low consistency treatment). The fibre properties were determined with a fibre analyser. The fibre cutting induced by the hydrochloric acid (HCl) treatment (‘cleavage index’) was used for the quantification of the fibre defects. The zero-span tensile strength of dry and wet paper was used to estimate the fibre strength. Each mechanical treatment induced fibre deformations in its own characteristic way. The wing defibrator induced fibre kinks and curl whereas the E-compactor, in addition to fibre cutting, favoured kinks. Low consistency Valley beating straightened the fibres and released fibre deformations. The fibre deformations, especially the number of kinks, correlated well with the wet zero-span tensile strength. The cleavage index had some correlation with the zero-span tensile strength, but the results indicated that the cleavage index may not be directly related to the mechanical defects in fibres but depend more on the chemical conditions on the fibre surface and the wall structure.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,Forestry

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3