Adjustable wetting of Liquid Flame Spray (LFS) TiO2-nanoparticle coated board: Batch-type versus roll-to-roll stimulation methods

Author:

Tuominen Mikko1,Teisala Hannu1,Haapanen Janne2,Aromaa Mikko2,Mäkelä Jyrki M.2,Stepien Milena3,Saarinen Jarkko J.3,Toivakka Martti3,Kuusipalo Jurkka4

Affiliation:

1. Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere , Finland

2. Aerosol Physics Laboratory Tampere University of Technology, P.O.Box 589, FI-33101 Tampere , Finland

3. Laboratory of Paper Coating and Converting and Center of Functional Materials, Åbo Akademi University, Porthaninkatu 3, FI-20500 Turku , Finland

4. Paper Converting and Packaging Technology, Tampere Univ. of Technology, P.O.Box 589, FI-33101 Tampere , Finland

Abstract

Abstract Superhydrophobic nanoparticle coating was created on the surface of board using liquid flame spray (LFS). The LFS coating was carried out continuously in ambient conditions without any additional hydrophobization steps. The contact angle of water (CAW) of ZrO2, Al2O3 and TiO2 coating was adjusted reversibly from >150° down to ~10−20° using different stimulation methods. From industrial point of view, the controlled surface wetting has been in focus for a long time because it defines the liquid-solid contact area, and furthermore can enhance the mechanical and chemical bonding on the interface between the liquid and the solid. The used stimulation methods included batch-type methods: artificial daylight illumination and heat treatment and roll-to-roll methods: corona, argon plasma, IR (infra red)- and UV (ultra violet)-treatments. On the contrary to batch-type methods, the adjustment and switching of wetting was done only in seconds or fraction of seconds using roll-to-roll stimulation methods. This is significant in the converting processes of board since they are usually continuous, high volume operations. In addition, the creation of microfluidic patterns on the surface of TiO2 coated board using simple photomasking and surface stimulation was demonstrated. This provides new advantages and possibilities, especially in the field of intelligent printing. Limited durability and poor repellency against low surface tension liquids are presently the main limitations of LFS coatings.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,Forestry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3