Author:
Apostol E,Ecelbarger C A,Terris J,Bradford A D,Andrews P,Knepper M A
Abstract
The aquaporins are molecular water channels that mediate transcellular water transport across water-permeable epithelia. To investigate the cause of the concentrating defect in the nephrotic syndrome, immunoblotting using membrane fractions from inner medulla was utilized to assess the level of expression of four aquaporin water channels in vehicle-treated versus puromycin aminonucleoside (PAN)-treated rats. Scanning electron microscopy demonstrating loss of glomerular foot processes and measurements of urinary protein excretion confirmed the efficacy of the PAN treatment. In rats receiving PAN, there was an increase in plasma vasopressin, without a change in plasma sodium concentration. Inner medullary tissue hypertonicity was sustained in PAN-treated rats while the urinary osmolality was low, pointing to defective osmotic equilibration across the collecting ducts in PAN-nephrosis. Among collecting duct aquaporins, there was an 87% decrease in aquaporin-2 expression and a 70% decrease in aquaporin-3 expression in the inner medulla, whereas aquaporin-4 expression was unaltered. Transmission electron microscopy of the inner medullary collecting ducts of PAN-treated rats showed normal-appearing cells. Thus, PAN-nephrosis is associated with an extensive downregulation of collecting duct water channel expression despite increased circulating vasopressin, providing an explanation for the concentrating defect associated with the nephrotic syndrome.
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献