Author:
Zwiech Rafał,Bruzda-Zwiech Agnieszka,Balcerczak Ewa,Szczepańska Joanna,Krygier Adrian,Małachowska Beata,Michałek Dominika,Szmajda-Krygier Dagmara
Abstract
Abstract
Background
The transport of water and urea through the erythrocyte membrane is facilitated by aquaporins such as aquaglyceroporin (AQP3), and type B urea transporters (UT-B). As they may play an important role in osmotic balance of maintenance hemodialysis (HD) patients, the aim of the present study was to determine whether any relationship exists between the expression of their genes and the biochemical / clinical parameters in HD patients.
Methods
AQP3 and UT-B (SLC14A1) gene expression was evaluated using RT-qPCR analysis in 76 HD patients and 35 participants with no kidney failure.
Results
The HD group demonstrated significantly higher median expression of AQP3 and UT-B (Z = 2.16; P = 0.03 and Z = 8.82; p < 0.0001, respectively) than controls. AQP3 negatively correlated with pre-dialysis urea serum concentration (R = -0.22; P = 0.049) and sodium gradient (R = -0.31; P = 0.04); however, no significant UT-B correlations were observed. Regarding the cause of end-stage kidney disease, AQP3 expression positively correlated with erythropoietin dosages in the chronic glomerulonephritis (GN) subgroup (R = 0.6; P = 0.003), but negatively in the diabetic nephropathy subgroup (R = -0.59; P = 0.004). UT-B positively correlated with inter-dialytic weight gain% in the GN subgroup (R = 0.47; P = 0.03).
Conclusion
Maintenance hemodialysis seems significantly modify AQP3 and UT-B expression but their link to clinical and biochemical parameters needs further large-scale evaluation.
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and clinical impact of organic uremic retention solutes: a comprehensive update. Toxins. 2018;10(1):33.
2. Saran R, Robinson B, Abbott KC, Agodoa LYC, Bragg-Gresham J, Balkrishnan R, et al. US Renal Data System 2018 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2019;73(3 Suppl 1):A7–A8.
3. Bello AK, Levin A, Lunney M, Osman MA, Ye F, Ashuntantang GE, et al. Status of care for end stage kidney disease in countries and regions worldwide: international cross sectional survey. BMJ. 2019;367:l5873.
4. Ok E, Asci G, Chazot C, Ozkahya M, Mees EJ. Controversies and problems of volume control and hypertension in haemodialysis. Lancet. 2016;388(10041):285–93.
5. Trinh-Trang-Tan MM, Cartron JP, Bankir L. Molecular basis for the dialysis disequilibrium syndrome: altered aquaporin and urea transporter expression in the brain. Nephrol Dial Transplant. 2005;20(9):1984–8.